Exploration in Metric State Spaces

نویسندگان

  • Sham M. Kakade
  • Michael Kearns
  • John Langford
چکیده

We present metric, a provably near-optimal algorithm for reinforcement learning in Markov decision processes in which there is a natural metric on the state space that allows the construction of accurate local models. The algorithm is a generalization of the algorithm of Kearns and Singh, and assumes a black box for approximate planning. Unlike the original , metricfinds a near optimal policy in an amount of time that does not directly depend on the size of the state space, but instead depends on the covering number of the state space. Informally, the covering number is the number of neighborhoods required for accurate local modeling.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Common fixed point results for graph preserving mappings in parametric $N_b$-metric spaces

In this paper, we discuss the existence and uniqueness of points of coincidence and common fixed points for a pair of graph preserving mappings in parametric $N_b$-metric spaces. As some consequences of this study, we obtain several important results in parametric $b$-metric spaces, parametric $S$-metric spaces and parametric $A$-metric spaces. Finally, we provide some illustrative examples to ...

متن کامل

Coupled coincidence point theorems for maps under a new invariant set in ordered cone metric spaces

 In this paper, we prove some coupled coincidence point theorems for mappings satisfying generalized contractive conditions under a new invariant set in ordered cone metric spaces. In fact, we obtain sufficient conditions for existence of coupled coincidence points in the setting of cone metric spaces. Some examples are provided to verify the effectiveness and applicability of our results.

متن کامل

Common fixed points for a pair of mappings in $b$-Metric spaces via digraphs and altering distance functions

In this paper, we discuss the existence and uniqueness of points of coincidence and common fixed points for a pair of self-mappings satisfying some generalized contractive type conditions in $b$-metric spaces endowed with graphs and altering distance functions. Finally, some examples are provided to justify the validity of our results.

متن کامل

Coincidence points and common fixed points for hybrid pair of mappings in b-metric spaces endowed with a graph

In this paper, we introduce the notion of strictly (α,ψ,ξ)-G-contractive mappings in b-metric spaces endowed with a graph G. We establish a sufficient condition for existence and uniqueness of points of coincidence and common fixed points for such mappings. Our results extend and unify many existing results in the literature. Finally, we construct some examples to analyze and support our results.

متن کامل

Coincidence Points and Common Fixed Points for Expansive Type Mappings in $b$-Metric Spaces

The main purpose of this paper is to obtain sufficient conditions for existence of points of coincidence and common fixed points for a pair of self mappings satisfying some expansive type conditions in $b$-metric spaces. Finally, we investigate that the equivalence of one of these results in the context of cone $b$-metric spaces cannot be obtained by the techniques using scalarization function....

متن کامل

$C$-class and $F(psi,varphi)$-contractions on $M$-metric spaces

Partial metric spaces were introduced by Matthews in 1994 as a part of the study of denotational semantics of data flow networks. In 2014 Asadi and {it et al.} [New Extension of $p$-Metric Spaces with Some fixed point Results on $M$-metric paces, J. Ineq. Appl. 2014 (2014): 18] extend the Partial metric spaces to $M$-metric spaces. In this work, we introduce the class of $F(psi,varphi)$-contrac...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2003